Какие гидроэлектростанции ты знаешь на каких реках они построены

Содержание
  1. ГИДРОЭЛЕКТРИ́ЧЕСКАЯ СТА́НЦИЯ
  2. На каком месте Россия: где находятся 10 самых мощных гидроэлектростанций мира
  3. «Три Ущелья» на реке Янцзы, Китай
  4. «Итайпу» на реке Парана, Бразилия/Парагвай
  5. «Силоду» на реке Янцзы, Китай
  6. ГЭС имени Симона Боливара («Гури») на реке Карони, Венесуэла
  7. ГЭС «Тукуруи» на реке Токантинс, Бразилия
  8. ГЭС «Гранд-Кули» на реке Колумбия, США
  9. ГЭС «Сянцзяба» на реке Янцзы, Китай
  10. ГЭС «Лунтань» на реке Хуншуйхэ, Китай
  11. Саяно-Шушенская ГЭС на реке Енисей, Россия
  12. Красноярская ГЭС на реке Енисей, Россия
  13. Гидроэлектростанция
  14. Содержание
  15. Особенности
  16. Принцип работы
  17. Крупнейшие ГЭС в мире
  18. Гидроэлектростанции России
  19. Крупнейшие гидроэлектростанции России
  20. Другие гидроэлектростанции России
  21. Предыстория развития гидростроения в России [3]
  22. Преимущества
  23. Недостатки
  24. Крупнейшие аварии и происшествия
  25. Примечания
  26. См. также
  27. Ссылки
  28. Полезное
  29. Смотреть что такое «Гидроэлектростанция» в других словарях:

ГИДРОЭЛЕКТРИ́ЧЕСКАЯ СТА́НЦИЯ

  • В книжной версии

    Том 7. Москва, 2007, стр. 112-116

    Скопировать библиографическую ссылку:

    ГИДРОЭЛЕКТРИ́ЧЕСКАЯ СТА́НЦИЯ (гид­ро­элек­тро­стан­ция, ГЭС), ком­плекс со­ору­же­ний и обо­ру­до­ва­ния для пре­об­ра­зо­ва­ния энер­гии по­то­ка во­ды (во­до­тока) в элек­трич. энер­гию. Гид­рав­лич. энер­гия от­но­сит­ся к во­зоб­нов­ляе­мым ис­точ­ни­кам энер­гии (ВИЭ), при­чём цик­лич­ность её вос­про­из­вод­ст­ва пол­но­стью за­ви­сит от по­то­ка во­ды, вслед­ст­вие че­го гид­ро­энер­го­ре­сур­сы не­рав­но­мер­но рас­пре­де­ля­ют­ся в те­че­ние го­да; кро­ме то­го, их ве­ли­чи­на ме­ня­ет­ся из го­да в год. Ха­рак­тер­ная осо­бен­ность ГЭС – пре­об­ра­зо­ва­ние ме­ха­ни­че­ской энер­гии во­ды в элек­три­че­скую про­ис­хо­дит без про­ме­жу­точ­но­го про­из-ва теп­ла. Для по­лу­че­ния элек­тро­энер­гии наи­бо­лее час­то ис­поль­зу­ют эф­фект «па­даю­щей» во­ды, ко­гда ес­те­ст­вен­ные или ис­кус­ст­вен­но соз­да­вае­мые пе­ре­па­ды уров­ней во­ды (с по­мо­щью пло­ти­ны и/или де­ри­вации ) фор­ми­ру­ют во­до­ток, на­прав­ляе­мый в гид­рав­ли­че­скую тур­би­ну .

    Источник

    На каком месте Россия: где находятся 10 самых мощных гидроэлектростанций мира

    Растущее население планеты и его экономическая деятельность требуют все большего количества энергии. Ежегодно вводятся в эксплуатацию новые тепловые, атомные, ветряные, солнечные, термальные и гидроэлектростанции. Строительство ГЭС является более затратным по сравнению, например, с тепловыми станциями, но при этом они используют возобновляемые источники энергии, что в конечном итоге, оказывается экономически более выгодным.

    В качестве источника энергии на ГЭС выступает движущийся поток воды. Для того, чтобы обеспечить стабильный напор воды в течение всего года, требуется строительство плотины.

    Вода, проходя по узким каналам в теле плотины, несет в себе колоссальную энергию. На выходе из плотины установлены турбины, которые соединены с генератором. Образующаяся в результате вращения турбин энергия, направляется к трансформаторам, ну а затем поступает за пределы станции по линиям электропередач (ЛЭП).

    На начальном этапе строительства гидроэлектростанции требуется провести тщательную оценку возможных рисков и негативного воздействия на окружающую среду. В ходе строительства столь масштабных сооружений происходит затопление большого количества суши и нередко требуется переселение людей. Вместе с тем плотины ГЭС — это одни из самых грандиозных технических сооружений человечества, вызывающих настоящее восхищение.

    Давайте посмотрим, в каких странах мира расположены самые мощные 10 ГЭС на планете и на каком месте находится Саяно-Шушенская ГЭС — самая мощная подобная станция в нашей стране.

    «Три Ущелья» на реке Янцзы, Китай

    Эта ГЭС имеет мощность 22 500 МВт, а запуск первых агрегатов состоялся в 2003 году. Для строительства этого грандиозного сооружения потребовалось переселить более 1,3 миллиона человек. Но результат того стоил. Помимо того, что ГЭС «Три Ущелья» является самой мощной среди подобных сооружений во всем мире, она еще и спасла регион ниже по течению от наводнений. По подсчетам специалистов, своенравная Янцзы только за последние 100 лет унесла жизни около 1,5 миллионов человек. Поэтому, урегулировав сток плотиной, китайцы смогли, наконец-то, обезопасить себя от колоссальных убытков и жертв.

    «Итайпу» на реке Парана, Бразилия/Парагвай

    Эта ГЭС имеет мощность 14 000 МВт и принадлежит одновременно Бразилии и Парагваю. Для заполнения водохранилища было переселено более 10 000 семей. На сегодняшний день эта ГЭС производит около 70% всей потребляемой энергии Парагвая и 15% энергии Бразилии.

    «Силоду» на реке Янцзы, Китай

    И снова Китай и его великая река Янцзы. Мощность этой гидроэлектростанции составляет 13 860 МВт. Третья по мощности ГЭС мира была введена в эксплуатацию в 2014 году.

    ГЭС имени Симона Боливара («Гури») на реке Карони, Венесуэла

    Эта ГЭС занимает четвертое место в мире и имеет мощность 10 230 МВт. ГЭС им. Симона Боливара удовлетворяет потребности Венесуэлы в электроэнергии на 60%, а также производит энергию на экспорт в Бразилию и Колумбию.

    ГЭС «Тукуруи» на реке Токантинс, Бразилия

    «Тукуруи» — вторая по мощности ГЭС на территории Южной Америки. Она запускалась в два этапа, и на сегодняшний день суммарная мощность станции составляет 8 370 МВт.

    ГЭС «Гранд-Кули» на реке Колумбия, США

    Это самая крупная ГЭС в Северной Америке. После ввода в эксплуатацию последних турбин в 1985 году мощность этой станции составила 6 809 МВт.

    ГЭС «Сянцзяба» на реке Янцзы, Китай

    И снова река Янцзы, которую китайцы решили использовать по максимуму. Суммарная мощность турбин этой ГЭС, введенной в эксплуатацию в 2014 году, составляет 6 448 МВт.

    ГЭС «Лунтань» на реке Хуншуйхэ, Китай

    Мощность ГЭС, занимающей 8-е место в мире, немного уступает предыдущей — 6 426 МВт. На сей раз это река Хуншуйхэ, которую китайцы заставили работать на благо экономики в 2009 году.

    Саяно-Шушенская ГЭС на реке Енисей, Россия

    Наконец-то, в списке самых-самых встретилась российская ГЭС. Самая мощная в России гидроэлектростанция способна вырабатывать 6 400 МВт энергии и была запущена в 1989 году. С тех пор она прошла процесс полной реконструкции после аварии в августе 2009 года.

    Красноярская ГЭС на реке Енисей, Россия

    Замыкает список крупнейших ГЭС планеты на сегодняшний момент Красноярская ГЭС, которая также расположена в нашей стране на реке Енисей. Запуск в эксплуатацию этой ГЭС состоялся в 1971 году, а ее мощность составляет 6 000 МВт. Каскад ГЭС на реке Енисей строился главным образом для обеспечения дешевой и бесперебойной энергией крупнейших алюминиевых заводов страны. Получение алюминия — это очень энергозатратный процесс, поэтому все крупные предприятия по производству алюминия находятся в Сибири, в местах расположения крупных ГЭС.

    Но этот список довольно динамичен: в настоящий момент ведется строительство ряда крупнейших объектов в области гидроэнергетики. В Китае, Бразилии, Эфиопии, Мьянме в ближайшие годы появятся ГЭС, которые дополнят список «самых-самых», а Россия потеряет свои позиции.

    Читайте также:  Абдуллах кубанов где берут начало реки

    Источник

    Гидроэлектростанция

    Гидроэлектроста́нция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

    Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

    Содержание

    Особенности

    • Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях. [1]
    • Турбины ГЭС допускают работу во всех режимах от нулевой до максимальной мощности и позволяют медленно изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.
    • Сток реки является возобновляемым источником энергии.
    • Строительство ГЭС обычно более капиталоёмкое, чем тепловых станций.
    • Часто эффективные ГЭС более удалены от потребителей, чем тепловые станции.
    • Водохранилища часто занимают значительные территории, но примерно с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, поселки).
    • Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.
    • Водохранилища ГЭС, с одной стороны, улучшают судоходство, но с другой — требуют применения шлюзов для перевода судов с одного бьефа на другой.
    • Водохранилища делают климат более умеренным.

    Принцип работы

    Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

    Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

    Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

    Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

    • мощные — вырабатывают от 25 МВт и выше;
    • средние — до 25 МВт;
    • малые гидроэлектростанции — до 5 МВт.

    Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

    Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

    • высоконапорные — более 60 м;
    • средненапорные — от 25 м;
    • низконапорные — от 3 до 25 м.

    В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных — ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами — стальными или железобетонными, и рассчитаны на различный напор воды.

    Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

    • русловые и плотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
    • приплотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.
    • деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.
    • гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

    В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации, и многое другое.

    Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций. [2]

    Крупнейшие ГЭС в мире

    Наименование Мощность,
    ГВт
    Среднегодовая
    выработка, млрд кВт·ч
    Собственник География
    Три ущелья 22,40 100,00 р. Янцзы, г. Сандоупин, Китай
    Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана, г. Фос-ду-Игуасу, Бразилия/Парагвай
    Гури 10,30 40,00 р. Карони, Венесуэла
    Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
    Тукуруи 8,30 21,00 Eletrobrás р. Токантинс, Бразилия
    Читайте также:  За рекой пустынная песчаная дорога пошла по опушке лиственного леса

    Гидроэлектростанции России

    По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

    Крупнейшие гидроэлектростанции России

    Наименование Мощность,
    ГВт
    Среднегодовая
    выработка, млрд кВт·ч
    Собственник География
    Саяно-Шушенская ГЭС 2,56 (6,40) [сн 1] 23,50 [сн 1] ОАО РусГидро р. Енисей, г. Саяногорск
    Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей, г. Дивногорск
    Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Братск
    Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Усть-Илимск
    Богучанская ГЭС [сн 2] 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара, г. Кодинск
    Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга, г. Волжский
    Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга, г. Жигулевск
    Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея, пос. Талакан
    Чебоксарская ГЭС 1,40 (0,8) [сн 3] 3,31 (2,2) [сн 3] ОАО РусГидро р. Волга, г. Новочебоксарск
    Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга, г. Балаково
    Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея, г. Зея
    Нижнекамская ГЭС 1,25 (0,45) [сн 3] 2,67 (1,8) [сн 3] ОАО «Генерирующая компания», ОАО «Татэнерго» р. Кама, г. Набережные Челны
    Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья, пос. Богородское
    Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама, г. Чайковский
    Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак, п. Дубки
    1. 12 Восстанавливается после аварии (2009 год), в скобках указано доаварийное значение.
    2. Строящиеся объекты.
    3. 1234 Мощность и выработка при проектном уровне водохранилища; в настоящее время фактическая мощность и выработка значительно ниже, указаны в скобках.

    Другие гидроэлектростанции России

    Предыстория развития гидростроения в России [3]

    Район Название Мощность,
    тыс. кВт
    Северный Волховская 30
    Нижнесвирская 110
    Верхнесвирская 140
    Южный Александровская 200
    Уральский Чусовая 25
    Кавказский Кубанская 40
    Краснодарская 20
    Терская 40
    Сибирь Алтайская 40
    Туркестан Туркестанская 40

    В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны — ГОЭЛРО, который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником — Днём энергетика. Глава плана, посвященная гидроэнергетике — называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации. Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России — мощностью 7394, в Туркестане — 3020, в Сибири — 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

    Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

    Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями. Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

    Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника. [5]

    На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо—машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) — вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой. [6]

    Преимущества

    В этом разделе не хватает ссылок на источники информации.
    • использование возобновляемой энергии.
    • очень дешевая электроэнергия.
    • работа не сопровождается вредными выбросами в атмосферу.
    • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

    Недостатки

    • затопление пахотных земель
    • строительство ведется только там, где есть большие запасы энергии воды
    • на горных реках опасны из-за высокой сейсмичности районов
    • сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

    Крупнейшие аварии и происшествия

    • Крупнейшей аварией за всю историю ГЭС является прорыв плотины китайского водохранилища Баньцяо на реке Жухэ в провинции Хэнань в результате тайфуна Нина1975 года. Число погибших более 170 000 человек, пострадало 11 млн. [7]
    • 17 мая1943 года — подрыв британскими войсками по операции Chastise плотин на реках Мёне (водохранилище Мёнезее) и Эдер (водохранилище Эдерзее), повлекшие за собой гибель 1268 человек, в том числе около 700 советских военнопленных.
    • 9 октября1963 года — одна из крупнейших гидротехнических аварий на плотине Вайонт в северной Италии.
    • В ночь на 11 февраля2005 года в провинции Белуджистан на юго-западе Пакистана из-за мощных ливней произошел прорыв 150-метровой плотины ГЭС у города Пасни. В результате было затоплено несколько деревень, более 135 человек погибли.
    • 5 октября2007 года на реке Чу во вьетнамской провинции Тханьхоа после резкого подъема уровня воды прорвало плотину строящейся ГЭС Кыадат. В зоне затопления оказалось около 5 тысяч домов, 35 человек погибли.
    • 17 августа2009 года — крупная авария на Саяно-Шушенской ГЭС (Саяно-Шушенская ГЭС — самая мощная электростанция России). В результате аварии погибло 75 человек, оборудованию и помещениям станции был нанесён серьёзный ущерб.
    Читайте также:  11 ноября 1480 года завершилось стояние на реке угре

    Примечания

    1. Интервью профессора Дмитрия Селютина.22.08.2009, «ВЕСТИ»
    2. Гидроэлектрическая станция (ГЭС)
    3. «Электроэнергетика. Строители России. XX век.» М.: Мастер, 2003. С.193. ISBN 5-9207-0002-5
    4. По материалам Комиссии ГОЭЛРО
    5. Березовская ГЭС
    6. Электроэнергетика Иркутской области. Газета «Наука в Сибири» № 3-4 (2139—2140) 23 января 1998 г.
    7. ГЭС как оружие — Технологии : Hi-Tech / infox.ru

    См. также

    Ссылки

    Крупнейшие ГЭС мира Google Maps KMZ (файл меток KMZ для Google Earth)

    • Карта крупнейших ГЭС России (GIF, данные 2003 года)

    Для улучшения этой статьи желательно ? :
    • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

    Отрасли промышленности

    Электроэнергетика Атомная (АЭС) | Ветровая (ВЭС) | Гидроэнергетика (ГЭС) | Тепловая (ТЭС) | Геотермальная | Водородная | Гелиоэнергетика | Волновая | Приливная (ПЭС)
    Топливная Газовая | Нефтяная | Торфяная | Угольная | Нефтеперерабатывающая | Газоперерабатывающая
    Чёрная металлургия Добыча рудного сырья | Добыча нерудного сырья | Производство чёрных металлов | Производство труб | Производство электроферосплавов | Коксохимическая | Вторичная обработка чёрных металов | Производство метизов
    Цветная металлургия Производства: алюминия | глинозёма | фтористых солей | никеля | меди | свинца | цинка | олова | кобальта | сурмы | вольфрама | молибдена | ртути | титана | магния | вторичных цветных металлов | редких металлов | Промышленность твердых сплавов тугоплавких и жаростойких металлов | Добыча и обогащение руд редких металлов
    Машиностроение и
    металлообработка
    Тяжелое | Железнодорожное | Судостроение | Судоремонт | Авиационная | Авиаремонт | Ракетная | Тракторное | Автомобильное | Станкостроение | Химическое | Сельскохозяйственное | Электротехническая | Приборостроение | Точное | Металлобработка
    Химическая Шахтерско-химическая | Основная химия | Лакокрасочная | Промышленность бытовой химии | Производство соды | Производство удобрений | Производство химических волокон и нитей | Производство синтетических смол
    Химико-фармацевтическая
    Нефтехимическая Шинная | Резино-асбестовая
    Нефтеперерабатывающая
    Лесная
    (комплексы)
    Лесная | Деревообрабатывающая (Лесопильная, Древесно-плитная, Мебельная) | Целлюлозно-бумажная | Лесохимическая
    Стройматериалов Цементная | Железобетонных и бетонных конструкций | Стенных материалов | Нерудных строительных материалов
    Стекольная
    Фарфоро-Фаянсовая
    Легкая Текстильная | Швейная | Кожевенная | Меховая | Обувная
    Текстильная Хлопчатобумажная | Шерстяная | Льняная | Шелковая | Синтетических и искусственных тканей | Пенько-джутовая
    Пищевая Сахарная | Хлебобулочная | Масло-жировая | Маслосыродельная | Рыбная | Молочная | Мясная | Кондитерская | Спиртовая | Макаронная | Пивоваренная и безалкогольных напитков | Винодельческая | Мукомольная | Консервная | Табачная | Соляная | Плодоовощная
    Энергетика
    структура по продуктам и отраслям
    Электроэнергетика:
    электроэнергия
    Традиционная
    Тепловые
    электростанции
    Конденсационная электростанция (КЭС) • Теплоэлектроцентраль (ТЭЦ)
    Гидроэнергетика Гидроэлектростанция (ГЭС) • Гидроаккумулирующая электростанция (ГАЭС)
    Атомная Атомная электростанция (АЭС) • Плавучая атомная электростанция (ПАТЭС)
    Альтернативная
    Геотермальная Геотермальные электростанции (ГеоТЭС)
    Гидроэнергетика Малые гидроэлектростанции (МГЭС) • Приливные электростанции (ПЭС) • Волновые электростанции • Осмотические электростанции
    Ветроэнергетика Ветряные электростанции (ВЭС)
    Солнечная Солнечные электростанции (СЭС)
    Водородная Водородные электростанции • Установки на топливных элементах
    Биоэнергетика Биоэлектростанции (БиоТЭС)
    Малая Дизельные электростанции • Газопоршневые электростанции • Газотурбинные установки малой мощности • Бензиновые электростанции
    Электрическая сеть Электрические подстанции • Линии электропередачи (ЛЭП) • Опоры линий электропередачи
    Теплоснабжение:
    теплоэнергия
    Централизованное
    Теплоэлектроцентрали (ТЭЦ)Котельные • Атомные электростанции (АЭС) • Атомные электростанции теплоснабжения (АСТ) • Геотермальные электростанции (ГеоТЭС) • Биоэлектростанции (БиоТЭС)
    Децентрализованное
    Малые котельные • Мини-ТЭЦ • Телонасосные установки • Электронагреватели • Печи
    Тепловая сеть
    Тепловые пункты • Теплотрассы
    Топливная
    промышленность:
    топливо
    Органическое
    Газообразное Природный газ • Генераторный газ • Коксовый газ • Доменный газ • Продукты перегонки нефти • Газ подземной газификации • Синтез-газ
    Жидкое Нефть • Бензин • Керосин • Соляровое масло • Мазут
    Твёрдое
    Ископаемое Бурый уголь • Каменный уголь • Антрацит • Горючий сланец • Торф
    Растительное Дрова • Древесные отходы • Биомасса
    Искусственное Древесный уголь • Пеллеты • Кокс (каменноугольный, торфяной, полукокс) • Углебрикеты • Отходы углеобогащения
    Ядерное Уран • MOX-топливо
    Перспективная
    энергетика :
    Энергетика Термоядерная энергетика • Космическая энергетика
    Топливо Плутоний • Торий • Дейтерий • Тритий • Гелий-3 • Бор-11
    Портал: Энергетика

    Wikimedia Foundation . 2010 .

    Полезное

    Смотреть что такое «Гидроэлектростанция» в других словарях:

    гидроэлектростанция — гидроэлектростанция … Орфографический словарь-справочник

    гидроэлектростанция — ГЭС Электростанция, преобразующая механическую энергию воды в электрическую энергию. [ГОСТ 19431 84] гидроэлектростанция ГЭС Комплекс сооружений и оборудования, преобразующих гравитационную энергию воды в электрическую энергию [ГОСТ Р 51238 98]… … Справочник технического переводчика

    ГИДРОЭЛЕКТРОСТАНЦИЯ — (ГЭС) электростанция, преобразующая механическую энергию потока воды в электрическую энергию посредством гидравлических турбин, приводящих во вращение электрические генераторы. Мощность крупнейших гидроэлектростанций до нескольких ГВт (напр.,… … Большой Энциклопедический словарь

    ГИДРОЭЛЕКТРОСТАНЦИЯ — ГИДРОЭЛЕКТРОСТАНЦИЯ, комплекс сооружений, использующий дамбы или приливные волны для преобразования энергии движения воды в электрическую. Почти во всех схемах кинетическая энергия воды приводит во вращение лопатки водяной ТУРБИНЫ, которая в свою … Научно-технический энциклопедический словарь

    ГИДРОЭЛЕКТРОСТАНЦИЯ — ГИДРОЭЛЕКТРОСТАНЦИЯ, и, жен. Электростанция, использующая энергию падающей воды для выработки электроэнергии. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    гидроэлектростанция — сущ., кол во синонимов: 3 • гидростанция (2) • гэс (1) • электростанция (9) … Словарь синонимов

    гидроэлектростанция — Электростанция, преобразующая механическую энергию потока воды в электрическую энергию. → Рис. 151 Syn.: ГЭС … Словарь по географии

    Гидроэлектростанция — (Hydro power plant, ГЭС) Определение гидроэлектростанции, особенности и принцип работы электростанции Информация об определении гидроэлектростанции, особенности и принцип работы электростанции Содержание Содержание Определение Особенности Принцип … Энциклопедия инвестора

    Гидроэлектростанция — 31. Гидроэлектростанция ГЭС D. Wasserkraftwerk E. Hydroelectric power plant F. Centrale hydro électrique Электростанция, преобразующая механическую энергию воды в электрическую энергию Источник: ГОСТ 19431 84: Энергетика и электрификация. Термины … Словарь-справочник терминов нормативно-технической документации

    гидроэлектростанция — hidroelektrinė statusas T sritis fizika atitikmenys: angl. hydroelectric plant; hydroelectric station vok. Wasserkraftwerk, n rus. гидравлическая электростанция, f; гидроэлектростанция, f pranc. centrale hydro électrique, f; station hydro… … Fizikos terminų žodynas

    Источник

    Поделиться с друзьями
    Байкал24